Categories We Write About

Build a resource recommendation engine

To build a resource recommendation engine, follow these steps, focusing on either a content-based, collaborative, or hybrid approach, depending on your goals and data availability. Below is a structured plan along with code examples in Python using pandas, scikit-learn, and optionally TensorFlow for deep models.


Step 1: Define the Use Case

Examples:

  • Recommending educational resources based on user interest.

  • Suggesting articles or tools based on user behavior or content tags.

  • Matching users with learning paths or courses.


Step 2: Collect and Prepare Data

You need:

  • A dataset of resources (title, description, tags, categories, ratings).

  • User interaction data (views, likes, time spent, ratings).

Sample resource dataset structure:

csv
resource_id,title,description,tags,categories,average_rating 1,Intro to Python,"Learn basics of Python",["python", "programming"],["programming", "python"],4.5 2,Data Science 101,"Intro to Data Science",["data science", "statistics"],["data", "statistics"],4.2 ...

User interaction dataset:

csv
user_id,resource_id,interaction_type,timestamp 101,1,view,2024-01-01 101,2,like,2024-01-02 102,1,like,2024-01-05 ...

Step 3: Choose Recommendation Strategy

A. Content-Based Filtering (using TF-IDF)

python
import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Load dataset resources = pd.read_csv("resources.csv") # Combine text features resources["combined"] = resources["title"] + " " + resources["description"] + " " + resources["tags"].apply(lambda x: ' '.join(eval(x))) # TF-IDF Vectorization tfidf = TfidfVectorizer(stop_words='english') tfidf_matrix = tfidf.fit_transform(resources["combined"]) # Cosine similarity matrix cos_sim = cosine_similarity(tfidf_matrix, tfidf_matrix) # Recommend similar resources def recommend(resource_id, top_n=5): index = resources[resources['resource_id'] == resource_id].index[0] similarity_scores = list(enumerate(cos_sim[index])) similarity_scores = sorted(similarity_scores, key=lambda x: x[1], reverse=True)[1:top_n+1] similar_resources = [resources.iloc[i[0]] for i in similarity_scores] return pd.DataFrame(similar_resources) print(recommend(1))

B. Collaborative Filtering (User-based or Item-based)

Use Surprise library:

python
from surprise import Dataset, Reader, KNNBasic from surprise.model_selection import train_test_split from surprise import accuracy # Create reader and load dataset reader = Reader(rating_scale=(1, 5)) data = Dataset.load_from_df(user_data[['user_id', 'resource_id', 'rating']], reader) # Train/test split trainset, testset = train_test_split(data, test_size=0.2) # User-based CF algo = KNNBasic(sim_options={'user_based': True}) algo.fit(trainset) # Predict and evaluate predictions = algo.test(testset) print("RMSE:", accuracy.rmse(predictions))

C. Hybrid Recommendation (Combining Content and Collaborative)

You can ensemble predictions from both models:

python
def hybrid_score(content_score, collaborative_score, alpha=0.7): return alpha * content_score + (1 - alpha) * collaborative_score

Step 4: Add Personalization Layer

Track user preferences using:

  • Implicit feedback (clicks, views, duration)

  • Explicit feedback (ratings, likes)

Then, match resources that align with the user’s profile using clustering (e.g., k-means) or deep learning (e.g., embedding similarity with TensorFlow or PyTorch).


Step 5: Build the Interface/API

Use FastAPI for the backend:

python
from fastapi import FastAPI app = FastAPI() @app.get("/recommend/{resource_id}") def recommend_resource(resource_id: int): recommendations = recommend(resource_id) return recommendations.to_dict(orient="records")

Step 6: Evaluate the System

Use metrics like:

  • Precision@k, Recall@k

  • MAP (Mean Average Precision)

  • NDCG (Normalized Discounted Cumulative Gain)

  • A/B testing if deployed


Optional: Deep Learning Approach

Use embeddings + neural networks:

python
import tensorflow as tf from tensorflow.keras import layers # Resource embeddings resource_input = layers.Input(shape=(1,)) embedding = layers.Embedding(input_dim=num_resources, output_dim=50)(resource_input) flatten = layers.Flatten()(embedding) # Dense layers dense = layers.Dense(64, activation='relu')(flatten) output = layers.Dense(num_resources, activation='softmax')(dense) model = tf.keras.Model(inputs=resource_input, outputs=output) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')

Conclusion

A resource recommendation engine can be built with simple content-based methods or more advanced collaborative and hybrid systems. Start with TF-IDF for MVPs, scale with collaborative filtering as data grows, and later explore deep learning for personalization.

Let me know if you’d like this customized for a specific domain like education, e-learning, or tech resources.

Share This Page:

Enter your email below to join The Palos Publishing Company Email List

We respect your email privacy

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories We Write About