Categories We Write About

Build a bookmark suggestion engine

Here’s a basic implementation of a Bookmark Suggestion Engine. This engine can suggest bookmarks based on user preferences, tags, and browsing history. It can be built as a Python module or web service.


1. Core Features

  • Add bookmarks with tags & metadata

  • Suggest bookmarks based on:

    • Keyword match

    • Most visited

    • Recently added

    • Tag similarity

    • User interest profile


2. Technologies Used

  • Python

  • SQLite or JSON for local storage

  • Optional: Flask for web API


3. Python Code (Basic Version)

python
import json from collections import defaultdict from difflib import get_close_matches class BookmarkEngine: def __init__(self, db_path='bookmarks.json'): self.db_path = db_path self.bookmarks = self.load_data() def load_data(self): try: with open(self.db_path, 'r') as f: return json.load(f) except FileNotFoundError: return [] def save_data(self): with open(self.db_path, 'w') as f: json.dump(self.bookmarks, f, indent=4) def add_bookmark(self, title, url, tags, visit_count=0): self.bookmarks.append({ 'title': title, 'url': url, 'tags': tags, 'visit_count': visit_count }) self.save_data() def suggest(self, query=None, top_n=5): if not self.bookmarks: return [] if query: # Match by tag or title results = [] for bm in self.bookmarks: if query.lower() in bm['title'].lower() or query.lower() in ' '.join(bm['tags']).lower(): results.append((bm, bm['visit_count'])) results.sort(key=lambda x: x[1], reverse=True) return [bm for bm, _ in results[:top_n]] else: # Suggest based on visit count return sorted(self.bookmarks, key=lambda x: x['visit_count'], reverse=True)[:top_n] def update_visit(self, url): for bm in self.bookmarks: if bm['url'] == url: bm['visit_count'] += 1 self.save_data() break def get_tags(self): tag_freq = defaultdict(int) for bm in self.bookmarks: for tag in bm['tags']: tag_freq[tag] += 1 return sorted(tag_freq.items(), key=lambda x: x[1], reverse=True) def suggest_by_tag(self, tag, top_n=5): suggestions = [bm for bm in self.bookmarks if tag in bm['tags']] return sorted(suggestions, key=lambda x: x['visit_count'], reverse=True)[:top_n]

4. Usage Example

python
engine = BookmarkEngine() engine.add_bookmark("Python Docs", "https://docs.python.org/3/", ["python", "documentation"]) engine.add_bookmark("GitHub", "https://github.com", ["code", "repository"]) engine.add_bookmark("Stack Overflow", "https://stackoverflow.com", ["questions", "coding", "help"], visit_count=10) print("Top Bookmarks:", engine.suggest()) print("Suggested for 'python':", engine.suggest("python")) print("Popular Tags:", engine.get_tags())

5. Optional Web API with Flask

python
from flask import Flask, request, jsonify app = Flask(__name__) engine = BookmarkEngine() @app.route('/add', methods=['POST']) def add(): data = request.json engine.add_bookmark(data['title'], data['url'], data['tags']) return jsonify({"status": "added"}) @app.route('/suggest', methods=['GET']) def suggest(): query = request.args.get('q', '') results = engine.suggest(query) return jsonify(results) @app.route('/tags', methods=['GET']) def tags(): return jsonify(engine.get_tags()) if __name__ == '__main__': app.run(debug=True)

6. Future Enhancements

  • Use NLP to enhance tag similarity

  • Store data in a proper database (e.g., SQLite, PostgreSQL)

  • Track timestamps to improve recency-based suggestions

  • Add user login and multi-user support

  • Create a browser extension or UI

Let me know if you want a browser plugin version, user authentication, or a front-end interface.

Share This Page:

Enter your email below to join The Palos Publishing Company Email List

We respect your email privacy

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories We Write About